

Electromagnetic Fundamentals 2ndYear Communications (2016-2017)

Sheet 7

1 Three point charges $Q_1=30~{\rm nC}$, $Q_2=150~{\rm nC}$ and $Q_3=-70~{\rm nC}$ are enclosed by surfaces S. What net flux crosses S ?

$$[\Psi_{net}=Q_{net}=110~{
m nC}]$$

2 A circular disk of 400 cm radius with a charge density $\rho_s=12\sin\phi~\mu C/m^2$ is enclosed by surface S what net flux crosses S ? Comment.

$$[\Psi=0]$$

 $\boxed{3}$ A 25 μC point charge is located at origin. Calculate the electric flux passing through a portion of a sphere shell with r=20 cm bounded by $\theta=0 \to \pi$ and $\phi=0 \to \frac{\pi}{2}$

$$\left[\Psi = \frac{Q}{4} = 6.25 \,\mu\text{C}\right]$$

The charge in the form of a plane with density $\rho_s=40~\mu\text{C/m}^2$ is located at z=-0.5~m . A uniform line charge of $\rho_l=-6~\mu\text{C/m}$ lies along the y axis . What net flux crosses the surface of the cube 2 m on an edge, cantered at the origin?

$$[\Psi = 148 \, \mu C]$$

 $\overline{5}$ Two identical uniform line charge lie along the x and y axes with $\rho_l=20~\mu\text{C/m}.$ Obtain \overline{D} and \overline{E} at (3,3,3) m.

$$\begin{bmatrix} \overline{D} = 0.5305 (\overline{a}_x + \overline{a}_y + 2\overline{a}_z) \\ \overline{E} = \frac{\overline{D}}{\epsilon} \end{bmatrix}$$

6 A uniform line charge of $\rho_l=3~\mu\text{C/m}$ lies along the z-axis, and a concentric circular cylinder of radius $\alpha=2~\text{m}$ has $\rho_s=(-1.5/4\pi)~\mu\text{C/m}^2$. Use Gauss' law to find \overline{D} in all regions (i.e. for $0\leq r\leq 2$ and r>2).

$$egin{aligned} ar{ar{D}} = egin{cases} rac{0.\,477}{r} \; \overline{a}_r \; \ \mu extsf{C/m}^2 & 0 \leq r \leq 2 \ rac{0.\,239}{r} \; \overline{a}_r \; \ \mu extsf{C/m}^2 & r > 2 \ \end{cases} \end{aligned}$$

 $\overline{7}$ A point charge Q=2000 pC is at the origin of spherical coordinates. A concentric distribution of charge at r=1 m has $\rho_s=40\pi\,$ pC/m² . What surface charge density on a concentric shell at r=2m would result in $\overline{D}=0$ for r>2 m ?

$$[\rho_{s2} = -71.2 \text{ pC/m}^2]$$