Benha University
Faculty of Engineering at Shoubra
Electrical Engineering Department

Electromagnetic Fundamentals $2^{\text {nd }}$ Year Communications
(2016-2017)

Sheet 7

1 Three point charges $Q_{1}=30 \mathrm{nC}, Q_{2}=150 \mathrm{nC}$ and $Q_{3}=-70 \mathrm{nC}$ are enclosed by surfaces S. What net flux crosses S ?

$$
\left[\Psi_{n e t}=Q_{n e t}=110 \mathrm{nC}\right]
$$

2 A circular disk of 400 cm radius with a charge density $\rho_{s}=12 \sin \phi \mu \mathrm{C} / \mathrm{m}^{2}$ is enclosed by surface S what net flux crosses S ? Comment.

$$
[\boldsymbol{\Psi}=\mathbf{0}]
$$

3 A $25 \mu \mathrm{C}$ point charge is located at origin. Calculate the electric flux passing through a portion of a sphere shell with $r=20 \mathrm{~cm}$ bounded by $\theta=0 \rightarrow \pi$ and $\phi=0 \rightarrow \frac{\pi}{2}$

$$
\left[\Psi=\frac{Q}{4}=6.25 \mu \mathrm{C}\right]
$$

4 Charge in the form of a plane with density $\rho_{s}=40 \mu \mathrm{C} / \mathrm{m}^{2}$ is located at $z=-0.5 \mathrm{~m}$. A uniform line charge of $\rho_{l}=-6 \mu \mathrm{C} / \mathrm{m}$ lies along the y axis. What net flux crosses the surface of the cube 2 m on an edge, cantered at the origin?

$$
[\Psi=148 \mu \mathrm{C}]
$$

5 Two identical uniform line charge lie along the x and y axes with $\rho_{l}=20 \mu \mathrm{C} / \mathrm{m}$. Obtain \bar{D} and \bar{E} at $(3,3,3) \mathrm{m}$.

$$
\left[\begin{array}{c}
\bar{D}=0.5305\left(\bar{a}_{x}+\bar{a}_{y}+2 \bar{a}_{z}\right) \\
\bar{E}=\frac{\bar{D}}{\epsilon}
\end{array}\right]
$$

6 A uniform line charge of $\rho_{l}=3 \mu \mathrm{C} / \mathrm{m}$ lies along the z-axis, and a concentric circular cylinder of radius $a=2 \mathrm{~m}$ has $\rho_{s}=(-1.5 / 4 \pi) \mu \mathrm{C} / \mathrm{m}^{2}$. Use Gauss' law to find \bar{D} in all regions (i.e. for $0 \leq r \leq 2$ and $r>2$).

$$
\left[\bar{D}=\left\{\begin{array}{cc}
\frac{0.477}{r} \bar{a}_{r} \mu \mathrm{C} / \mathrm{m}^{2} & 0 \leq r \leq 2 \\
\frac{0.239}{r} \bar{a}_{r} \mu \mathrm{C} / \mathrm{m}^{2} & r>2
\end{array}\right]\right.
$$

7 A point charge $Q=2000 \mathrm{pC}$ is at the origin of spherical coordinates. A concentric distribution of charge at $r=1 \mathrm{~m}$ has $\rho_{s}=40 \pi \mathrm{pC} / \mathrm{m}^{2}$. What surface charge density on a concentric shell at $r=2 m$ would result in $\bar{D}=0$ for $r>2 \mathrm{~m}$?

$$
\left[\rho_{s 2}=-71.2 \mathrm{pC} / \mathrm{m}^{2}\right]
$$

